Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xuan Huang, Jia-Geng Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.041$
$w R$ factor $=0.115$
Data-to-parameter ratio $=15.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Benzimidazolium 3,5-dihydroxybenzoate

In the crystal structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{4}{ }^{-}$, the partially overlapped arrangement and the face-to-face separation of 3.557 (7) \AA suggest $\pi-\pi$ stacking between parallel benzimidazolium cations, and the $\mathrm{C}-\mathrm{H} \cdots C g$ angle of 173° and $\mathrm{H} \cdots C g$ separation of $2.64 \AA$ (where $C g$ is the centroid of the benzene ring) suggest C $\mathrm{H} \cdots \pi$ stacking between the benzimidazolium cation and dihydroxybenzoate anion. Classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds consolidate the crystal structure.

Comment

We have been interested in the nature of aromatic stacking in complexes for several years (Chen et al., 2003; Pan \& Xu, 2004; Li et al., 2005) because aromatic stacking is an important intermolecular non-covalent interaction which correlates with electron transfer in some biological systems (Deisenhofer \& Michel, 1989). We present here the structure of the title compound, (I), which contains both benzene and benzimidazole aromatic ring systems.

(I)

The asymmetric unit of (I) consists of a benzimidazolium (bzim) cation and a dihydroxybenzoate (dhba) anion (Fig. 1). The carboxylate group of dhba is coplanar with the benzene ring [dihedral angle $1.05(9)^{\circ}$]. The small difference of 0.025 (2) \AA between the $\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{C} 1-\mathrm{O} 2$ bond distances (Table 1) is consistent with the value of 0.022 (4) \AA found in piperazinium bis(3,5-dihydroxybenzoate) (Burchell et al., 2001) and indicates the deprotonation of the carboxyl group.

Approximately symmetric $\mathrm{N}-\mathrm{C}$ bonds are observed in the protonated bzim cation; the differences between the $\mathrm{N} 1-\mathrm{C} 8$ and $\mathrm{N} 2-\mathrm{C} 8$ bond distances and between the $\mathrm{N} 1-\mathrm{C} 13$ and $\mathrm{N} 2-\mathrm{C} 14$ bond distances are smaller than twice the standard uncertainties (Table 1).

A partially overlapped arrangement is observed between parallel N1-bzim and $\mathrm{N} 1{ }^{\text {vi }}$-bzim cations [symmetry code: (vi) $-x+1,-y+1,-z+1]$ (Fig. 2). The face-to-face distance of 3.557 (7) A suggests the existence of $\pi-\pi$ stacking. C $-\mathrm{H} \cdots \pi$ stacking is observed between bzim and dhba (Fig. 1), the

Received 5 December 2005
Accepted 13 December 2005
Online 21 December 2005

Figure 1
The molecular structure of (I), with 50% probability displacement ellipsoids (arbitrary spheres for H atoms). The dashed line indicates a hydrogen bond and the dotted line indicates $\mathrm{C}-\mathrm{H} \cdots \pi$ stacking. [Symmetry code: (v) $x-\frac{1}{2}, y-\frac{1}{2}, z+\frac{1}{2}$.]

Figure 2
A packing diagram, showing classical hydrogen bonding (dashed lines) and $\pi-\pi$ stacking between parallel bzim cations. [Symmetry code: (vi) $-x$ $+1,-y+1,-z+1$.]
$\mathrm{C} 10-\mathrm{H} 10 \cdots C g$ angle and $\mathrm{H} \cdots C g$ separation being 173° and $2.64 \AA$, respectively, where $C g$ is the centroid of the C2containing benzene ring [symmetry code: (v) $x-\frac{1}{2}, y-\frac{1}{2}$, $\left.-z+\frac{1}{2}\right]$.

Classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds occur (Table 2), consolidating the crystal structure of (I).

Experimental

$\mathrm{CdCl}_{2}(1 \mathrm{mmol}), 3,5$-dihydroxybenzoic acid (2 mmol), benzimidazole (2 mmol) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol})$ were dissolved in a water/ethanol
solution ($20 \mathrm{ml}, 1: 1$). The mixture was refluxed for 2 h and filtered after cooling to room temperature. Single crystals of (I) were obtained from the filtrate after 10 d .

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{4}{ }^{-}$
$M_{r}=272.26$
Orthorhombic, Pbcn
$a=16.297$ (4) A
$b=10.600$ (3) \AA
$c=14.649$ (5) \AA
$V=2530.6(13) \AA^{3}$
$Z=8$
$D_{x}=1.429 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: none
23272 measured reflections
2901 independent reflections
Mo $K \alpha$ radiation
Cell parameters from 19663
reflections
$\theta=3.1-27.0^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Chunk, brown
$0.40 \times 0.38 \times 0.36 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.115$
$S=1.09$
2901 reflections
182 parameters
H -atom parameters constrained

2435 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-21 \rightarrow 20$
$k=-13 \rightarrow 13$
$l=-19 \rightarrow 19$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0603 P)^{2}\right. \\
& +0.6188 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\max }=0.35 \mathrm{e}^{\circ}{ }^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0108 \text { (10) }
\end{aligned}
$$

Table 1
Selected bond distances (\AA).

$\mathrm{N} 1-\mathrm{C} 8$	$1.3160(19)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.2690(15)$
$\mathrm{N} 1-\mathrm{C} 13$	$1.3862(19)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.2445(15)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.3200(18)$	O3-C4	$1.3607(14)$
$\mathrm{N} 2-\mathrm{C} 14$	$1.3875(19)$	$\mathrm{O} 4-\mathrm{C} 6$	$1.3573(14)$

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 $\cdots \mathrm{O} 1$	0.86	1.87	$2.7128(18)$	168
$\mathrm{~N} 2-\mathrm{H} 2 \cdots 3^{\mathrm{i}}$	0.86	2.08	$2.8510(18)$	149
$\mathrm{O}^{2}-\mathrm{H} 3 A \cdots 1^{\mathrm{ii}}$	0.93	1.72	$2.6499(16)$	179
O4-H4A $^{\mathrm{iii}}$	0.91	1.72	$2.6289(15)$	178
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{\text {iv }}$		0.93	2.34	$3.235(2)$

Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $-x+\frac{3}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (iii) $x,-y+1, z-\frac{1}{2}$; (iv) $-x+\frac{3}{2}, y+\frac{1}{2}, z$.

Hydroxy H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions (Table 2) with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}$ (carrier).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia,

organic papers

1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Burchell, C. J., Ferguson, G., Lough, A. J., Gregson, R. M. \& Glidewell, C. (2001). Acta Cryst. B57, 329-338.

Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. \& Chiang, M. Y. (2003). J. Coord. Chem. 56, 253-259.
Deisenhofer, J. \& Michel, H. (1989). EMBO J. 8, 2149-2170.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Li, H., Yin, K.-L. \& Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
Pan, T.-T. \& Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

