Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xuan Huang, Jia-Geng Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.002 Å R factor = 0.041 wR factor = 0.115 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Benzimidazolium 3,5-dihydroxybenzoate

In the crystal structure of the title compound, $C_7H_7N_2^+ \cdot C_7H_5O_4^-$, the partially overlapped arrangement and the face-to-face separation of 3.557 (7) Å suggest π - π stacking between parallel benzimidazolium cations, and the $C-H\cdots Cg$ angle of 173° and $H\cdots Cg$ separation of 2.64 Å (where Cg is the centroid of the benzene ring) suggest C- $H\cdots \pi$ stacking between the benzimidazolium cation and dihydroxybenzoate anion. Classical $N-H\cdots O$ and $O-H\cdots O$ and weak $C-H\cdots O$ hydrogen bonds consolidate the crystal structure.

Comment

We have been interested in the nature of aromatic stacking in complexes for several years (Chen *et al.*, 2003; Pan & Xu, 2004; Li *et al.*, 2005) because aromatic stacking is an important intermolecular non-covalent interaction which correlates with electron transfer in some biological systems (Deisenhofer & Michel, 1989). We present here the structure of the title compound, (I), which contains both benzene and benzimidazole aromatic ring systems.

The asymmetric unit of (I) consists of a benzimidazolium (bzim) cation and a dihydroxybenzoate (dhba) anion (Fig. 1). The carboxylate group of dhba is coplanar with the benzene ring [dihedral angle $1.05 (9)^{\circ}$]. The small difference of 0.025 (2) Å between the C1–O1 and C1–O2 bond distances (Table 1) is consistent with the value of 0.022 (4) Å found in piperazinium bis(3,5-dihydroxybenzoate) (Burchell *et al.*, 2001) and indicates the deprotonation of the carboxyl group.

Approximately symmetric N-C bonds are observed in the protonated bzim cation; the differences between the N1-C8 and N2-C8 bond distances and between the N1-C13 and N2-C14 bond distances are smaller than twice the standard uncertainties (Table 1).

A partially overlapped arrangement is observed between parallel N1-bzim and N1^{vi}-bzim cations [symmetry code: (vi) -x + 1, -y + 1, -z + 1] (Fig. 2). The face-to-face distance of 3.557 (7) Å suggests the existence of π - π stacking. C-H··· π stacking is observed between bzim and dhba (Fig. 1), the

0276 Huang et al. • C₇H₇N₂⁺C₇H₅O₄⁻

© 2006 International Union of Crystallography

Printed in Great Britain - all rights reserved

Received 5 December 2005 Accepted 13 December 2005 Online 21 December 2005

The molecular structure of (I), with 50% probability displacement ellipsoids (arbitrary spheres for H atoms). The dashed line indicates a hydrogen bond and the dotted line indicates $C-H\cdots\pi$ stacking. [Symmetry code: (v) $x - \frac{1}{2}, y - \frac{1}{2}, z + \frac{1}{2}$.]

Figure 2

A packing diagram, showing classical hydrogen bonding (dashed lines) and π - π stacking between parallel bzim cations. [Symmetry code: (vi) -x + 1, -y + 1, -z + 1.]

C10-H10···*Cg* angle and H···*Cg* separation being 173° and 2.64 Å, respectively, where *Cg* is the centroid of the C2-containing benzene ring [symmetry code: (v) $x - \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$].

Classical N-H···O and O-H···O and weak C-H···O hydrogen bonds occur (Table 2), consolidating the crystal structure of (I).

Experimental

CdCl₂ (1 mmol), 3,5-dihydroxybenzoic acid (2 mmol), benzimidazole (2 mmol) and Na₂CO₃ (1 mmol) were dissolved in a water/ethanol

Crystal data

 $C_7 H_7 N_2^{+} \cdot C_7 H_5 O_4^{-}$ $M_r = 272.26$ Orthorhombic, *Pbcn* a = 16.297 (4) Å b = 10.600 (3) Å c = 14.649 (5) Å V = 2530.6 (13) Å³ Z = 8 $D_x = 1.429$ Mg m⁻³

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: none 23272 measured reflections 2901 independent reflections

Refinement

Refinement on F^2	
$R[F^2 > 2\sigma(F^2)] = 0.041$	
$vR(F^2) = 0.115$	
S = 1.09	
2901 reflections	
82 parameters	
H-atom parameters constrained	

 $\mu = 0.11 \text{ mm}^{-1}$ T = 295 (2) KChunk, brown $0.40 \times 0.38 \times 0.36 \text{ mm}$

Cell parameters from 19663

Mo $K\alpha$ radiation

reflections

 $\theta = 3.1 - 27.0^{\circ}$

2435 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.037$ $\theta_{\text{max}} = 27.5^{\circ}$ $h = -21 \rightarrow 20$ $k = -13 \rightarrow 13$ $l = -19 \rightarrow 19$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0603P)^2 \\ &+ 0.6188P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} &= 0.35 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.29 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: } SHELXL97 \\ \text{Extinction coefficient: } 0.0108 (10) \end{split}$$

 Table 1

 Selected bond distances (Å).

N1-C8	1.3160 (19)	O1-C1	1.2690 (15)
N1-C13	1.3862 (19)	O2-C1	1.2445 (15)
N2-C8	1.3200 (18)	O3-C4	1.3607 (14)
N2-C14	1.3875 (19)	O4-C6	1.3573 (14)

 Table 2

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O1$	0.86	1.87	2.7128 (18)	168
$N2 - H2 \cdot \cdot \cdot O3^{i}$	0.86	2.08	2.8510 (18)	149
$O3-H3A\cdots O1^{ii}$	0.93	1.72	2.6499 (16)	179
$O4-H4A\cdots O2^{iii}$	0.91	1.72	2.6289 (15)	178
$C8 - H8 \cdots O2^{iv}$	0.93	2.34	3.235 (2)	162

Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}$, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (iii) x, -y + 1, $z - \frac{1}{2}$; (iv) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z.

Hydroxy H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions (Table 2) with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm O})$. Other H atoms were placed in calculated positions, with C-H = 0.93 Å and N-H = 0.86 Å, and refined as riding with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm carrier})$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia,

organic papers

1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

- Burchell, C. J., Ferguson, G., Lough, A. J., Gregson, R. M. & Glidewell, C. (2001). Acta Cryst. B57, 329–338.
- Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 253–259.
- Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
- Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.
- Rigaku (1998). *PROCESS-AUTO*. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). *CrystalStructure*. Version 3.00. Rigaku/MSC, The Wood-
- lands, TX 77381-5209, USA. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.